Posts tagged with "ppp-ar"



18. August 2019
Will PPP ever replace RTK? Over the past decade, we have seen the convergence of PPP and RTK towards “PPP-RTK,” where satellite orbit/clock/bias corrections are augmented by local atmospheric corrections to enable instantaneous convergence to cm-level accuracies. But how close are we to instantaneous cm-level PPP-AR, without local augmentation?
03. August 2018
Precise point positioning (PPP) requires careful modeling of several error sources affecting GNSS observations. Additionally, consistency between the network and user software is essential to obtain the upmost accuracy. Unfortunately, an inconsistency affecting the CSRS-PPP software has been causing, for a few years now, a height bias of several millimeters.
13. July 2018
The online PPP service offered by the Canadian Geodetic Survey of NRCan has been available since 2003. It processes, on average, about 1000 RINEX files daily, fulfilling the positioning needs of Canadians and the international community. The PPP landscape having evolved significantly in the last few years, the underlying PPP engine will be replaced by a new version on August 14th 2018.
05. July 2018
When I first got involved in GNSS, more than a decade ago, my objective was to reduce the convergence time of PPP solutions. In the past few years, I witnessed this methodology evolve and fast convergence became possible using ambiguity resolution and external atmospheric data. The upcoming years will be a game changer in this area: with GNSS modernization, instantaneous PPP convergence will be possible even without any reference stations nearby.
14. August 2017
Obtaining mm-level positioning accuracies with GNSS requires modeling of all error sources such as higher-order ionospheric effects. As a part of an IAG working group, I collaborated with European colleagues to investigate how this error source could be estimated as a part of the PPP filter. The results were published last week in GPS Solutions (Banville et al. 2017).
28. June 2017
With ongoing work at NRCan aiming at offering an online PPP service supporting ambiguity resolution, we performed a validation exercise consisting of processing nearly 40 permanent GPS stations in eastern Canada over a 10-year period. As a by-product of this analysis, we computed station velocities and compared them with the values derived from the Bernese network solutions done at NRCan. The results were published last week in Survey Review and I am offering a short summary here.
06. November 2016
Hardware delays, or biases, affect GNSS carrier-phase and code measurements and must be properly accounted for in high-accuracy positioning. Several models were proposed to handle biases in precise point positioning with ambiguity resolution (PPP-AR), all of which can be cast in an uncombined representation. In this post, I explain the unified processing scheme that I am using in my software to deal with common PPP-AR products.
11. July 2016
The extension of network RTK to larger networks is facilitated by a state-space representation of error sources, and is often associated with the term PPP-RTK. By adding atmospheric corrections to satellite orbit and clock corrections, it is possible to obtain fast convergence and seamless transition from a network RTK to a PPP solution. While this concept has been introduced nearly 15 years ago, there are still very few providers of PPP-RTK services at a global scale. Is this about to change?
09. April 2016
The L5 signals transmitted by the block IIF GPS satellites caught the IGS by surprise. The time-varying inter-frequency phase bias that exists between L1/L2 and L5, also called “line bias”, is significant enough that it requires dissemination to users. Besides the lack of an adequate format, I believe that this initiative has been delayed because the benefits of a third frequency on float PPP are not substantial. To realize the benefits of L5, the IGS needs to embrace PPP-AR!
21. March 2016
The term “PPP-RTK” usually involves positioning using state-space corrections generated from a network of GNSS receivers. This flexible representation of error sources allows for a scalable solution to be deployed: a global PPP solution can be obtained with precise satellite orbit and clock corrections, and instantaneous convergence can also be obtained by providing local atmospheric augmentation. In this post, I apply this concept to achieve single-frequency PPP with ambiguity resolution (AR).

Show more